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METHOD OF CALCULATING THE LATERAL MOTIONS OF AIRCRAFT

HASED ONTHE

By Hsrry E. Murray
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and Frederick C. Grant

SUMMARY

The lateral motions of aircraft are obtained by mgans of the
Laplace tiansfomn which gives solutions expressed in terms of elementary
functions for “thefree and forced motions. These equations permit the
calculation of the free motion of an aircraft following any initial
condition or the fprced motion following the application of constant
external forces and moments. These forced motions can be used to obtain
by means of Duhamel’s integral the response to any srbitrsry forcing
function. All the classical stability concepts can be deduced from
these same solution equations largely by inspection. These equations
for the lateral motion are applied to the calculation of the lateral
stability of a specific airplane and to the calculation of certain of
its free and forced motions. . .

INTRODUCTION

The lateral motions of aircraft are represented by three simultaneous
differential equations which are generally assumed to be line=. The
fundamental problem of lateral dynsmics involves the solution of these
differential equations in terms of the aerodynamic and mass parameters
of the airplane. The solutions can thenbe used to obtain numerically
the motion of the airplane as a function of time.

The recent application of the Laplace transform to the solution of
systems of linear differential,equationspermits a more general analysis
of the problem of airplane motion than that of,reference 1, which is
based upon Heaviside’s operational calculus. Heaviside’s operational
calculus permits a calculation of the forced motion, which is the motion
following the application of external forces and moments. The Laplace
transform permits these same calculations and also permits the direct
calculation of the free motion, which is the motion following finite
initial values of the variables and their first derivatives in the

.
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absence of eternally a~plied forces and moments. This calculation
cannot be made hy use of Heaviside’s operational calculus. The Q3place
transform solutions, which include both the free and forced motions, may
be written in a closed form from which all the classical stabili~ con-
cepts can be deduced lsrgely by inspection. The form of the equations
of motions of the airplane is independent’ofsuch aerodynamic parameters
as Reynolds number and Mach nunibe”rjand these parameters enter the eqya-
tions only as they effect the values of-the aerodynamic constants or
stability’derivativesappesring in the egyations. The values of the
stability derivatives must-be obtained by actual measurements during
physical tests or from’aerodynamic theory before motion calculations can
be attempted.

Investigations of smne of the possibilities of applying the Laplace
transform to the study of aircraft motion have been reported in refer-
ences 2 and 3, and in two British reports, one by K. Mitchell, the other
by J. Wathsm andE. Friestley. The British papers do not give final
equations in a form suitable for calculation purposes. The analy13isof
reference 2 closely parallels that of the present paper until the point
of taking the inverse I.aplacetransform is reached. At this point,
reference 2 indicates that the inverse Laplace transform can be taken
either by means of the relatively simple partial-fraction eqansion
“(usedin the present paper) or the more complicated inversion theorem
of the Laplace transform. I?eitherapproach in reference 2 is carried
to the point of final e~tions containing only elementary functions and
in a form particularly suited for computation. A solution similar to
that of the present paper is indicated in reference 3. only the form

.

of the analysis is shown in,reference 3, however, and all the details
necessary for practical applications have not been carried out.

The present paper presents an analysis based on the representation
of the lateral motion of an aircraft by differential equations. The
results of the analysis are solutions in closed form expressing the free
and forced motions in terms of elementary functions. These equations
permit the calculation of the free motion of an aircraft following any
initial condition or the forced motion following the application of
constant external forces and moments. These forced motions can be u8ed
to obtain, by means of Duhamel’s integral, the response to any arbitrary
forcing function as shown in references k and 5. The solutions are
readily adaptible to calculationby digital-@pe calculating machines
and the calculation is an arithmetical process requiring no knowledge of
the theory of the Laplace transform. The solution equtions of motion
have been applied on an automatic calculating machine to the calculation

‘‘of
of

the lateral stability of a specific airplane and to the calculation
certain free and forced motions as illustrative examples. .

.
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comIcIENTs ANDSYMBOLS
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e

P

v

m

g

trti lift coefficient (W cos 7/@)

rolling-moment coefficient (L/q%)

yawing-moment coefficient (I?/qSb)

lateral-force coefficient (Y/@)

airplane weight, pounds

rolling moment

pitching moment

yawing moment

lateral force

aileron hinge tint ‘

elevator hinge moment

rudder hinge moment

dynamic pressure (PV2/2)

whg area, square feet

wing span, feet

..

inclination of flight path to,horizontal (positive
in clinib),degrees

.

angle of attack, degrees #

angle of pitch, degrees

mass densi~ of air, slugs per ctiic foot

free-stream veloci~, feet per second

airplane mass, sl~s (w/g)

acceleration due to gravity, feet per second per
second

...—. ...—.._— .________ _. ~— ._—_____ _
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%

t

P

r

nondimensional

time, seconds

inclination of

time (tVfi)

principal longitudinal axis of inertia
(positive for axis above flight path at nose),
degrees

airplane

angle of

angle of

relative-density factor (m/pSb)

r)

t
bank, radians p at

o

yaw or azimuth, radians (r’ r t’)
rolling veloci~ about stabili~ X-tis, radians per

second

yawing velocity about stability Z-axis, radians per
second

angle of side81ip, radians

rolling-moment coefficient of forcing-function couple
in roll

yawing-mconent
in yaw

lateral-force

coefficient of

coefficient of

@eriods of oscilhtory modes,

—

forcing-function couple

lateral forcing function

seconds

times to damp to half-amplitude of oscillatory modes,
seconds

cycles to damp to half-amplitude of oscillatory modes

aileron deflection, degrees

rudder deflection, degrees

.

.

-. — — -.—
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i5e

Kx

Kz

‘Xz

KXO

Kz
o

‘%

kzo
u

A

h

R1

RI ‘

elevator deflection, degrees

nondimensional radius of ~ation about stability

x-axis
(~ %

2cos~ +Kzo2sia~
)

nondtiensional radius of ~ation about stability

z-~s (+~)

.
nondimensional product of inertia between stability

x- and z-axes ((KZ02 - K
%)

)
2 sin q cos q

nondhensional r dius of
x-axis

(%/ J
b

nondimensional radius of

‘-=’8 (kzoP)

radius of gyration about

radius of gyration.about

Laplace transform of ~

stability qlsrtic

roots of A = O

gyration about principal

gyration about principal

principal X-axis, feet

principal Z-axis, feet

roots of ~ = O

real psrt of 13 and X4 when A3 and X4 are

complex conju@tes

imaginary prt of A3 and X4 when X3 and A4

are complex conjugates “

real part of Xl and ~ when Xl and ~ are

cmnplex conjugates

——.——.
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A,B,C,D,E

R

A19A2>A39A4>A5>A6

%YB2YB3P4JJ5)B6

cl,c2,c3,c4,c5

RA

1A

RB

IB

%

%“

RA’

1A‘

RB’

IB’

NAcflmfZL29

hagiaary part of L1 and ~ when Al and ~

are complex conjugates

coefficients of stability quartic

Routh’s discriminant

amplitude coefficients for @

amplitude coefficients for ~

amplitude coefficients for j3

real part of A3 and A4 when X3 and

complex conjugates

imaginary & of A3 and A4 when A3

are complex co~ugates

real part of B3 and B4 when X3 and

complex conjugates

*Kpt of B3* and B4 when X3

=e complex conjugates

real part of C3 and C4 when X3 and

complex conjugates

haginary part of C3 and C4 when X3

are complex co~ugates

real part of Al and A2 when Al and

complex conjugates

~i~prt of Al and A2 when Xl

sre complex conjugates

real part of B1 and ~ when L1 and

complex conjugates

imagidary @t of Bl and B2’when Xl and ~

sre complex conjugates.

.

—.

.

~ . —-——
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7

%’

Ic‘

real part of Cl and C2 when Al and ~ are

complex conjugates

haginary ~rt of Cl and C2 when Xl and ~,
are complex conjugates

for @ oscillation corre-
conjugate roots X3 and ).4

KA amplitude coefficient
spending to complex

(2 +-)

KB amplitude coefficient
spending to complex
, %

for ~ oscillation corre-
conjugate roots A~ and A4

.($2 B2 + IB2
)

Kc wnplitude coefficient
spending to complex

for !3 oscillation corre-
conjugate roots X3 and ~

$

KA’ , for @ oscillation corre-
conjugate roots Al and L2

amplitude coefficient
spending to complex

“ (2$-)

KB’ amplitude coefficient for * oscillation corre-
conjugate roots Al and ~spending to complex

(2V$-)

“Kcl anylitude coefficient
spending to complex

for ~ oscillation corre.
conjugate roots Xl and X2

phase angle for @
conjugate complex

% oscillation corresponding to

‘( )tan-l Q
RA

phase angle for *
conjugate complex

oscillation corresponding to
roots X3 and X4, radians

()tin-l Q
RB

-,
.

— . ... --. — —.- .-. ..— __ .____ —_— —..... . . . ... __ —— —
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%’

*n
(gnr= —

()a~
2V

acn
Cnp =—

()a$

phase pngle for ~ oscillation corresponding to
conjugate complex roots X3 and h4, radians ‘

phase angle for @ oscillation correspxxling to
conjugate complex roots Xl and ~, ratians

()tin-l Ii
RA ‘

phase angle for V oscillation corresponding to
conjugate complex roots Xl and ~, radians

()t~-1 IL
RB ‘

phase angle for j3 oscillation correspotiing to
conjugate complex roots 11 and X2, radians

()

tin-l IL
Rc’ .

a

.

. .. . .

.
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&y
Cyr = —

()a$

.

acy
cy=—

P ap

b@blYb2Yb3)b4)b5/

Subscripts:

0

a

coefficients appearing in numerator terms of ampli-
tude coefficients for @

coefficients appearing in numerator terms of smpli-
tude coefficients for ~

coefficients appearing in numerator terms of ampli-
tude coefficients for ~

initial value

transformed variable

The linear equations of
in figure 1 and representing

ANALYSIS

motion, referred to the -s system shown
the lateral motion of an airplane are

..— - — -.— -—-- —.-—.-..-.— -— —.-———---—-—-—--- - ——-- .—
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2L9J+#-cy==o

, .

The terms Czc, c%) ad Cyc are forcing functions which represent

disturbances tiposed upn the state of motion of the airplane by control
movement or a-spheric turbulence. These terms, in general, are arbi-

trary functions of time, but for the purpose of this analysis, they are
considered to be constants applied at zero time. After a solution has “
been obtained in terms of constant forcing quantities this solution can
be used to obtain a new solution for an arbitrary forcing function by
Duhamel’s integral as explained %n references 4 and 5.

,
Transformation of Equations

~n the Laplace transform is applied (reference 6, p. 8), the 0
transformed equations become after multiplying throughby a

Y

(wxq(w$l + (&&z.)(%$0+ Czc

}

(2a)

,

— —–—. ---.—- — —–..——
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(2P’#mu3 )(- Lc 02 @a+ 2V#z%3
2%

1

) a (-c~a)% = r2
- ;Cnraz v +

r2 =
(
2p@~a2 - $npu) % + ~WZ2”2 - &nr~) $~ +

(2b)

(2Wxz”) (i@).+ (W3)(%*)0 + c%

(2@a2 - ~Pa)Pa = r3 ~ (2C)

/

rj = (-&CY>)$fo+ (2%U - *Yr.)VO+(Zpba)fb + %=

.

Solution

d

of Transformed Equations

After equations
flu iB

@a =

where

solved by determinants, the expression for

~a5 + a~ak + a2a3 + a3~ + a4a + a5

$A ‘

●

A= Aa4+Ba3+Ca2+Da+E

.

.

(3)

(4)

—. ..— ——. —..—.— —-. . . . -—-—- ...-. —-- —-—
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and the constants are given by

(1 D2 K=’Kx

%=@08~3 ,
‘Xz %2

NACA TN 21.29

.,

.

.

——— .- . ..— -. —-. ———. --
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\lCYp o cYr

13

)+

H)
Czr Clc

P%C
Ilr Cnc

.

———— .—— - ...—. — -— —-—



IIKX2 Km
‘A = 8%3

K= KZ2

.

.

KX2 K= CZr
Cl K=

B = 2%2 K= KZ2 Cnr - 21#’ p

01. -2cyp
c% %2

.

— .-—
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E=

o

cl
P

Cnp

1

Czr

cIlr

t-any

expression for

-$. =
bou5 + blak + b2a3 + b3a2 + b~ + b~

u

a2A

where the comtants are given by

(1b. = ~ 8%3 ‘X2
‘z

bl =

(

*()2Pb2

%z
KZ2

Km

KZ2

1

cZr

%r

.2cyf

cl
_ 2%2 P

Cnp

(5).

KZ2

— .——-. ——-—.-—---——----—- —.. ._— .—. —.—-..—— .—
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.

-D2 = (1
Czp

(WOO-2%2
Cnp

IICZP KX2 +
4%2

c% ‘z

(1 I
o KX2 Kxz Czp Clp Czr

*o i% c% cnp Cnr ‘h” ‘XZKZ2 -

%p CYP w.
Cyp Cyp Cyr

,

)+

(1 (l Cz CZC %?
c~ Czp P H)Czc C2P

POW) p +2~c%cncK~+k

c%c% c% Cnp
Cy 47yc o

$

.

.

——. —...
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expression

where the constants are

(1 1)

KX2 Km
co = PO 8k3

K= KZ2

ia

c 2P

Cnp

Cy
P

Czc

Cnc

%=

Coa4 + clu3 + C2U2+ CU+C4

aA

given by

(6)

.

___ ~.. - —... .. . —.. .— —----- .—--—— -— —-- —-.--. —
—-— -- -—.— ..———-.-— —
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.

K= Cz hr

I ‘1) (

Czp Km P

~ t= 7CL + (woo * Kz2 C c~r +
Cnp KZ2

np

o. Cyp Cyr 4

K=* Cz Km
P

)(1)

Czp Czr
21# Km c KZ2

‘P
+ 90 ~% +

1 -2 tan 7CL O
c% Cnr

(

o K+ Km Czc Czp Czr

‘1 )

Kx2 Czc
-~ C% Cnp Onr -% “o Km $2 - 4%2

Km C%
c,= c, Cyr c,= ‘c, Cyr

P P

.

.

.

.

_ ——. — — — .—
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. (C3 = do &L

All the determinants given in this paper are expanded in the
appendix. .

In order to obtain the actual variables @, 4, and ~ from the
transformed variables an inverse LaPlace transformation must be applied

to %v 4U, and Ba. The expressions for !%, ~a, and 1% we Of the
form pa/~ where pa and ~ are polynomials, the degree of ~
being higher than that of pa. Reference 6,
inverse transform of a function of this type
used hefein)

This equation assumes all the roots & of

page 45, indicates that the
is (in terms of the variables

.

~ = O to be distinct. All
roots of ~ = O are distinct for 13a;however,”for @a. and Vgj

~ = O has double zero roots. (See equations (3), (5), and (6).) The .

.
..

.
---- .——.-—- . -—___ _—_____ __ - ___ _. __ ._ __ —— _ . . —... _ __ _ ._
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.

terms in the equations for @ and ~ resulting from the two zero roots
of ~ = O sre given according to reference 6, page 49, by

.
#

‘aQ(o)+ Q(o)sb
da

where

~ . P_oo2

%

The analysis takes three forms depending upon the character of the
nonzero roots of ~ = O
Four real roots, two real
or two pairs of conjugate

The inverse Laplace

# = A1eX1% +

where the constants are

Al =

A2 =

A3 =

which are the same as the roots of A = O.
roots plus a pair of conjugate complex rootsy
complex roots may exist.

Four Real Roots

transform of ga is

~e%% ~)+sb‘3%+A4e.+Ae3
+ A3~ + A6

(7)

3+a~22+a4).2+a
ao~25 + ‘?1%4 + a2?2

6AA25 + 5B~4 + LW# + 3DA# + 2EA2

.

.

.

,
.

.

-.—— _ _.—. ..——.- . —— —— — —



NACA TN 2129 a

61m45 + 5BX44 + 4CA43 + 3DA42 + 2EX4

a5
A5.= ~

The inverse Laplace transform of *a is

●

?-lsb
~= Ble + %?e%% + Bjex3*b + B4eX4sb + ~~ + B~

where the constants are

B1 =

B2 =

B3 =

B4 =
boX45 + blX44 + b2X43 + b#42 + b4A4 + ‘5

6AX45 + 5BL44 + 4CA43 + m42 + 2Ek4

(8)

. . . . . -__. ————— —--—— ———— — .—-—
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B,=&@
.

The inverse Iaplace transfom of pa is

where the ‘constants

cl =

C2 =

C3 =

tie

COA15

. .

COX25 + C1A24 + c2k23 + C3A22 + C4?2

6A@ + 5BX# + 4C%3 + WL22 + 2E~”

.

COA 5 + Olh 4 +C2A3+CA2+C4X

&x35 +“5BX34 + 4CX33 + 3DA32 + 2Eh3

2 + C4A4COA45 + C1L44 + c2h43 + C3L4

6AX45 + 5BX44 + 4CA43 + 3DA42 + mA4

.

.

(9)

.

.

.—

C4 “C5=%

.—— .-

.

.
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The quantity ~@ can be obtained from equation (7) by differentiation
as

where the constants are

Al’ = AIA1

A2’ = A2A2

‘3’ = %

A4’ = A4A4

The quantity ~~ canbe obtdned from equation (8) by differentiation
aE

(11)

.
where the constants are .

B2‘ = A$2

B3‘ = X3B3

B4’ = X4B4

B5‘ = B5

.

—-—— ..— .-.— . . ——.— ———. -.—..——. ..-. ___ ——.——
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The quantity D@ can be
as

where the constants we

NACA TN 2129

obtained from equation (9) by differentiation
.

+ C!2ie%% + C3tex3sb + C4tex4% (12) ‘

C4’ = ?S4C4

Collecting the equatio~ of motion (equations (7) to (12)) for the case
of four real roots gives

@= Alehl% +~e%sb + A3eL3Bb + A4eA4% +“A

1

5% + ‘6

* =BleX1% +~e%% +~eX3% +B4eX4% +B5~ + B6

P =.clekl%’+ c2e%% + C3ex3% + C4ex4% + C5.
.

‘1

(13)

~$=A1’eX1%+A2’eX2% s ‘3W
km

+A’e + A4’e +A’
5

Two Real Roots and a Pair of Conjugate Complex Roots

If a pati of conjugate complex roots A3 and A4 existe, the

coefficients of the terms of #, V, and S (equation (13)) corresponding
to X3 and X4 are conjugate complex. The complex number A3k can be
written

A3k= Rk + Iki

.

.

.

..——
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Thus,

).3= R1 -tI1i

~32 = R2. + 12i

●

A33 = R3 + 13i

L34 = R4 + 14i

L35 = ~ + 15i

The coefficients of the terms of @ resulting from the complex roots
sxe

a@5+alR4+a@~+a+2+a@l+a5+ (w15+al14+a213+a312+aUl)i
A3 =

6AR5+5BR4+kR3 +3DR2+~~+ 6A15+ 5B14 -I-4C13+ 3D12 + 2E11 i
)

or after rationalizing

A3 = RA + IAi

and “

A4 = RA- IAi

Similarly, the coefficients of the terms of ~ resulting from.the
complex roots are

B3 = RB + IBi

B4=RB-IBi ‘

and the coefficients of the terms of P resulting from the complex roots
are

C3 =~+ICi

and

“C4=~ - Ici

-. . ..—..——.——.. ..—- .=. .—.-— . .-— —.. ————-- —— --.—. .—-— —— —.- .. .. — - . --—~.



26

The terms of @ corresponding to

X3% X4%
A3e + A4e =

/

NACAm? 2129

the co~ugate complex roots are

~ eRl~
A cos(Il~ + mA)

where

‘A=’-
and

Similarly, these terms for $ are

~exs%+B4eA4% =KBeR1% COS(Il~+~)

where

and

~ . tin-l Q
RB

and for B are

‘3sb + c4ek4sb =
C3e ~eRlsb cos(I1~ +%)

where

Kc . d2 ~’ + IC2

.

.

.

.

.

.— — .——-.—-— .— .-.—
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The final ;qyations
roots are

corresponding to two real and two conjugate complex

@ = AleX1% + ~eX2% + KAeR1sb cos (11~ + OA) + fi5Sb + A6

(1

)11tin-l _
RI

KBe‘1% CCIS (11~ + ~) + ‘5% + ‘6

KceR1*b (
)

cos 11~ + ~ + C5

+

+

+

(‘A- ‘R’%co’ l,sb +“A +

(‘4!==R1%Cos‘l%‘~+

(‘d=- ‘R’%Cos 11%‘% +

,

—...—-.. .-— .. .. ._______ ___ .—— —. .—._ __ ——— .. —.._ ________ .
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Two Pairs of Conjugate Complex Roots

If two pairs of conjugate’complex roots, XI, X2, and k3j ~4
exist, another cosine term is introduced into equations (14) in place
of the exponential so that

@= KA’eR1’%cOS(If S~ +~A’) +KAeR1%COS@3~ +OA) +A5~ +A6

$= KB’eR1’% cos(I1’sb +~’)” +KBeR1% cos(Ilsb +%) +B5sb +B6

p = ~tew-b Rlsb
cos(I1’sb +~’) +~e

( )
COS IISb + ~ + C5

( )w-= ‘R’%co’‘l%+%‘-n-’ ~ +‘5

(“ ‘~lF=-eR1’%Cos 11’%‘%’ ‘tin-’;+)

.

.

>(15)
.

.

.- _— — .
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DISCUSSION

The lateral motions of aircraft mve been obtained by means of the
Laplace transfom. This analysis resulted in equations from which the
free lateral.motion of.an aircraft ctibe calculated for any initial
condition, or the forced motion can be calculated for any constant lateral :
force or moment applied at zero time. In general, the lateral forces and
moments applied to the airplane by control movement or atmospheric tur-
bulence are not constant but are arbitrary functions of time. After a
solution has been obtained in terms of constant disturbing forces and
moments, however, the solution for the arbitrary forces and moments can
be obtained by Dubamel’s integral as explained in references k and 5.

The nature of the motion indicatedby equations (13) to (15) depends
upon the form of the roots of the polynomial

A=O

which is commonly referred to as the stabili~ quartic. The roots of the
quartic can take three forms - first, all four roots real; second, two
real roots and a pair of conjugate complex roots; and third, two pairs of
conjugate complex roots. In the case of the lateral motions of airplanes
the first form almost never occurs; the second form is very common; and .“
the third form occurs under rather rsre conditions. The actual motions
indicated by equations (13) to (15) can be seen to be composed, in general,
of the sums of terms which are the amplitude coefficients (the A’s, B’s,
C’S, and K’s Of equations (13) to (15)) modulated by exponential and cosine
factors.

All the classic~ stabiliw concepts can be obtained from equations
(13) to (15). Because stability is concerned only with the free motion
(motion due to initial conditions) the forcing or disturbing quantities
Clcj %cy and WC can be set equal to zero-so that the amplitude coef-

ficients A5, B5, -d c5 v~sh= The variation of the amplitude of the

motion with time, which determines the stability> iS now dependent ent~e%Y
h~sb e~2% X3% ~ksb RISb

upon the damping coefficients e 9 Ye 9e Ye )

and eR1’%. The motion dbinishes with time (stable) if Al, %, L3)
X4, Rlj and R1’ are all negative. Thus, these criteria for stability

sre that all real roots of A = O and the real parts of all complex
roots be negative. These criteria have been expressed in reference 7 in
terms of the signs of the coefficients of the quartic A = O and the
sign of Routh’s discriminant which is written as

R=EC!D- ~2 _ ~2 (16)

—. - — ——.- --— ---——- ——.-- — — — - ..——. -- ..—— —..— . -—————-——— .—
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These criteria in the present case can be expressed as
necesssry and sufficient conditions for the real roots

follows: The
and the real parts

of the complex roots to be negative sre that every coefficient of the
-tic ~d R should be positive.

If the motions contain oscillations, the periods of the oscillations
. in seconds me from equations (14) and (15)

P==
IIV

and the times to damp to half-smplitude in seconds

b 10~2
,T1/2 = -—

RIV

b 10G2
T1/2’ = -

R1’V

and the cycles to damp to half-amplitude are

1
are

1
(17)

(18)

(19)

.

.

APPLICATION

The equations for the motion of an aircraft resulting from the
analysis were used to calculate illustrative examples of certain free
and forced motions of an experimental swept-ting airplane, a three-view
drawing of which is shown in figure 2. The calculations weremade by .

use of the Bell Telephone Laboratories x-667M relay computer available
at the Langley Laboratory. The calculations were based upon stability
derivatives measured on a model of the experimental airplane in the

.

— ——
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Langley stabili@ tunnel and presented in reference 8. Motions were cal.
culated for true airspeeds of lb and 200 miles per hour under standsrd
conditions. The stabi~ty derivatives, other related aerodynamic quan.
tities, and the mass characteristics of the expertiental airplane as used
in the calculations are shown in table I. The coefficients of the sta-
bili~ quartic (equation (k)) and value of Routh’s discriminant (equa-
tion (16)) were calculated as

CL airspeed A B c D E
(mph)

R

0.693 140 26.19791 10.18804 3.021074 0.6312249 0.00235618 5.8

.340 200 26.20030 9.818377 2.5oh971 .k623735 .00014875 8.7

The positive signsof all these quantities indicate complete stabili~
of the lateral motion for both airspeeds. The coefficients of the quartic
are such as to give-two real roots and a pair of conjugate complex roots
which are

CL airspeed L1
(mph)

% R1 + iI1
●

0.693 140 -0.2802853 -0.003603100 -0.0524952 *0.2859079i

.340 200 -.2649690 -.0003222716 -.05472583 kO.2519754i

Discussions of methods of obtaining the roots of the quartic can be found
in references 9 to 12.

The first or second powers of a multiplied by A in the denomi- .
nators of equations (3), (5), and (6) introduce one or two zero roots,
respectively, in addition to the roots given in the preceding table.

.
These zero roots lead to the terms containing the smplitude coefficients
A5, A6, ~, B6, ad C5 of e~tio~ (14). For tie e~r~n~ a~-

plane, the motion can be thought of as composed of three modes - the
oscillatory mode resulting from the pair of conjugate complex roots, the
rolling-s@sidence mode resulting from the lsrge negative real root ~1)
and the spiral mode resulting from the small negative real root and the
zero roots. Stability of the free spiral motion is indicatedby the
negative sign of the small.real root X2.

. .. . . . _ —— — ..—— .—— .—.. —. ..——— . . ___ — .—..
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The period, time to damp to half-amplitude, and cycles
half-amplitude of the oscillatory motion were calculated by
tions (17) to (19) from the imaginary and real parts of the
complex roots as

free and

NACA TN 2129

to dsnp to
use of equa-
conjugate

.

.

I ITrue airspeed - P T1/2
CL (mph) (see) (sec) Ix/2 .

0.693 140 3.60 2.16 0.60

.340 200 2.86 1.45 .51 ‘

motions calculated
forced motions.

Free motions are those

fell into two categories which may be termed

Free Motions

which exist following an initial condition
and in the absence of any forcing function. The five possible initial
conditions axe fio~ $Oj Po, ro, and pOO Every free motion that the

airplane is capable of executing can be obtained by superposition of the
motions following these initial conditions taken separately.. Figures 3
to 6 show the calculated free motion following the initial conditions @O,

PO) ro, and po for the experimental airplane in level flight according

to equations (14). No airplane response to ‘$o occurs when the angle of
climb is zero. Table II,gives the values of the amplitude coefficients
(see equations (14)) correspotiingto the motions of figures 3 to 6. These
figures show the total airplane motion and show the separate contributions
to,the motionby the rolling-subsidence and spiral modes when the motion
resulting from these modes is appreciable. Figures 3 to 6 indicate that
in the cas~ of the experimental airplane the ifitial condition PO pre-

dominately excites the oscillatory mode of motion, ro excitis both the
oscillatory and spiral modes, and #0 and PO predominately excite the

spiral mode. The rolling-subsidencemode appears for a’very short period
of time in the initial phases of any motion involving appreciable rolling
veloci~. ~ principal effects upon the motions of figures .3to 6 of
increasing the airspeed from l@ to 200 miles per hour is to reduce the
period as well as the time and cycles to damp to half-amplitude.

Forced Motions --- - . .. ..!.--..”
-.. . .-.,, . . ... -

Forced motions are those which exist duri& the action of forcing
functions upon the airplane. Any forced motion of an airplane can be

#

.

.

.

“
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built upby proper superposition (Duhaqel’s integral, reference 4) of the
motions following the application at zero time of constant values of the
forcing functions Czc, Cncj and Cyc. Figures 7 and 8 show the cal-

culated response according to equations (14) of the experimental airplane
to the constant value 0.02 for, Cl and Cn applied at zera the. The

c
response to a value of 0.02 for ~c was also calculated but during a

time period of 8 seconds was negligible compared with responses resulttng
from Czc and Cnc. For the experimental airplane, the value Clc = 0,02

correspmds to a total aileron deflection of 21.0°, the value of Cnc = 0.02

corresponds to a rudder deflection of 13.7°, and Iihevalue @c = 0.02

corresponds to a rudder deflection of 7.5°. The res~nse to Clc is pre-

dominately in the spiral mode of motion; whereas the response to Cnc is

predominately in the spiral and oscillatory modes.

A large number of forced motions calculated for the experimental air-
plane corresponding to various flight conditions are presented in refer-
ence 8. These motions were built up by superposition of motions such as
those d figures 7 and 8 following the application of the constant forcing
functions Cl ad Cnc. A large number of comparisons are made in

c
reference 8 between calculations and flight tests for a large variety of
flight conditions. The agreement between calculated and flight motions.
is good and indicates the practicability of analyzing the dynamic lateral
flying qualities of aircraft by use of the theory of lateral dynamics such
as that herein developed if experimentally determined values of the aero-
_C and mass parameters of the airplane me available. Reference 8
also indicates rather insignificant effects upon the calculated motions
that result from a consideration of slight nonlinesrities which occur in
certain aerodynamic parameters of the experimental airplane.

CONCLUDING REMARKS

The lateral motions of aircraft were determined by means of the
~place transform which gave solutions expressed in terms of elementary
~ctions for the free and forced motions. These equations permit the
calculation of the free motion of an aircraft following anY initial con-
dition or the forced motion following the application of constant external
forces and moments. These forced motions canbe used to obtain the
response to any arbitrary forcing function by means of Dulwnel’”sintegral.
All the classical stability concepts can be deduced from these same
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.

solutions largely by inspect~on. These equations for the @teral motion
were app~ed to the calculation of the lateral stabili~ of a specific
airplane and to the calxaibtion of certain of its free and forced motions.

Iangleykronatiical Laboratory
I?ationalAdwisory Committee for Aeronautics

Fan@ey A&Force Base, Vs., Awil 3, ‘1950

.

.
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fwPENDIx

EXPANSION OF TEE COEFFICIENT DE~

The stabili@ quartic coefficients sre

A= 8w3 (KX2~2 - K=2)

&b(czp%r
)

- C~Cnp,.

)( 1 cZ#%lpcYpCzphp + ~ + C’ C Cy + czpcylr~p - cZ~%p~T -p% r

g.

C’ccy-c’ccy
p% p )r~p

E
[

+tan (7C’C
P%

+ cZpcYlr 1-C’rcw

...—._—..-— ._. ...—. -— -— -- -- —-–—.-— -—— ———.—— ———— —--—
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The coefficients
cients for @ are

.

NACA TN 2129

.

aPpe~@ in the nm.erator of amplitude coeff’i.

.

[
al = @o2%*xz(c2r + Cnp) )+ 4~%Yb(KH2 - Kx~z2 - 2~2@X2Cnr +

Kz%,] + (%00 ~%?@x2Kz2 - %2]

[( )
a2 = ?$o%Kx2 %rbp - C~@r (

-I-4%2 KX~% - %ZC2P) + WZ2 (c2pcYp-

) (+ PbKXz Cqmp - %PCYP + cZ~~r- (clr~~) + $% C?pcnr -
c%QP

.— —.—
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+-

-1-

c~cnPcYr “2Pc~cYp “2Bc~cYr - c?,cqcYP -P

(%foo~pb’(k%l, - %%,)

c~cYr)+ wm@zpcYr-czrcY,‘*02%][

KXZCnpjl+(hw)(j[i%’(%pcyr- cZrcY,) -1-

(tan YCL Kz2c] -
B

(4%2 KnC% - ~z’czp) +

w% (+#Yp -

+)%2&cYc ~ ,) + 2MXZ~nccY~ - c~cYc) +- c~ Cy

.— .——-. .— ..__ .. –._. -—. . .. . . .. . .—— —. —.—.
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(&j=tSn”7cLc2cn-c2c
pc+ cq3 )

I

The coefficients appesring in the numerator of smplitude coefficients
for v are .

bl =
[

$0 ‘2P&% (c% + c2r) - @b2cY&?.z2 - mu-q - %2(KZ2C2P +

.

.

——— .-

.
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.

(b5 = CL CZCC% 1
- c@c/

●

The coefficients appearing in the numerator of amplitude coeffi-
cients for $ are

co =

[

j308~3(Kx2Kz2
1

- K~2

c1 = @O [4pb2cL@X2KZ2 - ‘XZ2] + (~d)()~%2cYp(Kx2Kz2 - Km* +1

(~2Cy KX2KZ2 - K*2
c )

.

I

f,

—— —
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(h@)op&&q%p%. - %XYp) + 2WFKX2(2KZ2CL - c%) +

.

[
f+)*(C2PC+- c,rc~]+%-$)2(KXZCZC -Xx%%)+%KZ2(c,ccyp -

Czpcyc)+‘x2f’nccy.- C%CYC) +‘Kxz~~cyc-Cnccyp)+

(%%’ cZrcrc - %ccrr ) .

.“

o

—- .—— _ _. .__. _. -.— .. —______ ____ ———. .—... -. —. -
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‘3 =

.

t

1[ (1 tan 7CL CZpCnr

(.
hCL KXZCZr - Kfinr +vo~

1
- CZrCnp +

-Czcl% (cZpcnc c % ) (+2~cL ‘z%zc - ‘~cnc )

( )( Lccc2% tan YcL Kx~~ - ‘XZCZc + 4 ZC~ Yr +
t

+

c@#Ye +

c2rcnccYp - CZrcnpcYc - clpcn~cYr - CZccnrcYp
)

(=4 ‘ *LCzrcnc - Czccq ) (
+ ~ tin 7CL Czccnp - Czpcn=

)

.

.

.

●

✎
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TAME I

AERODYNAMIC AND MASS CIEl!RACTERISTICSOF AN .

EXPERIMENTAL SWEFT-WING AIRPLANE

1~# 140 200

w 8700 8700

*

s 250 250

m 270.2 270.2

P 0.00238 0.00238

7 0 0

I b 33.6 33.6
I

0.693 0.340 I
a 10.6 4.8

7 11.05 5.25.
% 13.51 13.51

v/b 6.Im. 8.730

0.02329 I 0.02219 I
KZ2 0.05932 0.06042

Km 0.007316 0.003544

-0.0659 I -0.0275
I

-c% ‘0.100 O.om

Cy
$

-0.739 -0.722

cl -0.325 -0.31
P

c% .
-0.1 -0.06 ~

Cy 0.44 0.3
P

. cq. 0.12 0.07

c% -0.280 -0.280

%r 0.36
I

0.40 “

lMiles-per-hou units.

s

.
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Figure l.– stability axis system. Positive values of forces, moments,

and angles are indicated by arrows.
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